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ABSTRACT

Interannual variability in the abundances of blue crab
(Callinectes sapidus) in populations along the U.S. east
coast is well documented, but the mechanisms driv-
ing these fluctuations remain poorly understood.
Using principal component analysis and dynamic fac-
tor analysis we quantified the patterns in variability
and the degree of synchrony among blue crab popula-
tions along the U.S. east coast to gain insight into
the mechanisms regulating the dynamics of these
populations. We determined that a latitudinal pattern
in the variability in abundance among the states
existed and that a combination of the Gulf Stream
Index, southern winter temperature, and larval mix-
ing in the coastal ocean may be important drivers for
the observed fluctuations of blue crab. The blue crab
population in the Chesapeake Bay appeared to be an
anomaly in that its abundance did not match the lati-
tudinal trend seen in the other states. Understanding
the dynamics of blue crab throughout its range may
help managers determine which population responses
reflect local dynamics and which may reflect shared,
regional responses.
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INTRODUCTION

Understanding the mechanisms responsible for the
observed coherence in interannual variations in abun-
dances of populations remains a central challenge in
ecology. In some cases, populations appear to be regu-
lated through density-dependent processes that act to
maintain a population at or close to a stable equilib-
rium (Murdoch, 1994; Berryman, 2002; Turchin,
2003). In such cases, the level of variability in abun-
dance is believed to vary inversely with the degree of
density-dependent feedback. Two generally accepted
density-dependent mechanisms, competition and pre-
dation, invoke intra-specific interactions to determine
the degree of regulation in a particular population
(Hixon et al., 2002). Both of these processes can regu-
late population size by limiting population growth at
high densities through either increased competition
for resources or increased incidence of predation.
Analyses of density-dependent mechanisms reveal
characteristic lags in the responses of population abun-
dances (May, 1974).

Density-independent control has also been used to
explain the coherence of population abundances
(Andrewartha and Birch, 1954). Under this modality,
two populations may fluctuate in a similar manner
due to a common external driver affecting both
populations. This has been termed synchronization
(Liebhold et al., 2004). Two density-independent
processes have been implicated in synchronization.
Dispersal of individuals resulting from physical or bio-
logical processes may cause exchanges of individuals
between different populations, thereby inducing syn-
chronization in the dynamics of both populations
(Cowen et al., 2006). A common response to envi-
ronmental factors can also induce synchronization
(i.e., Moran effect; Moran, 1953). Moran effects have
been identified in numerous terrestrial and aquatic
studies for a variety of environmental factors, includ-
ing broadscale climatic indices such as the El Niño
Southern Oscillation (ENSO; Cheal et al., 2007;
Lima et al., 2001, 2002) and the North Atlantic
Oscillation (NAO; Fromentin and Planque, 1996;
Post and Stenseth, 1999; Forchhammer et al., 1998).
Regardless of whether it is dispersal, a Moran effect or
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another mechanism that is primarily responsible for
density-independent synchronization, it has been
hypothesized that the degree of synchrony will be
inversely related to the geographic distance separating
two populations (Liebhold et al., 2004). This inverse
relationship has been termed spatial synchrony
(Liebhold et al., 2004).

The blue crab, Callinectes sapidus, is one species
whose populations could potentially be synchronized
as a result of dispersal, environmental forces, or a com-
bination of both due to its complex life history. Blue
crabs are commonly found in estuarine and coastal
ecosystems in the western Atlantic from Cape Cod,
MA, USA, to northern Argentina, although they can
be found as far north as Nova Scotia, Canada, during
warm conditions (Williams, 1974). Genetic and con-
ventional tagging data suggest the possibility of spa-
tially separated populations along the Atlantic coast
(McMillen-Jackson et al., 1994; McMillen-Jackson
and Bert, 2004). The geographic separation of popula-
tions suggests that the Moran effect could potentially
play a role in the synchronization of adult blue crabs.
The life cycle of each blue crab population follows a
general pattern, although the timing of key events var-
ies latitudinally (Hines et al., 2010). Winter tempera-
ture appears to be an important control in regulating
abundances and the timing of events (Bauer and
Miller, 2010). Generally, adults mate in estuarine
waters in autumn. Impregnated females subsequently
migrate to the mouth of the estuary, overwinter, and
release larvae into the coastal ocean in late spring.
Larvae return to estuaries where they settle as juve-
niles and remain for the duration of their lives, with
negligible migration to other estuaries.

The Atlantic seaboard of North America is charac-
terized by a wide, shallow shelf that can be divided
into a few connected, large marine ecosystems (LMEs;
Sherman, 1994). Many marine and estuarine species
are broadly distributed across this shelf (Longhurst,
2001) and, because of this, individual populations
within these LMEs likely experience common patterns
of forcing. Nye et al. (2013) recently evaluated the
effects of climate forcing on north Atlantic marine
ecosystems and demonstrated patterns of broadly
coherent responses in the productivities and distribu-
tions of a number of ecologically and economically
important coastal and marine species within the basin.
There are several broad scale indices of climate forcing
for the north Atlantic, including the Atlantic Multi-
decadal Oscillation (AMO; Nye et al., 2013), the
NAO (Ottersen et al., 2001) and the Gulf Stream
Index (GSI; Taylor, 1996). Each index reflects differ-
ent aspects of the climate system within the basin.

The AMO is an index of sea surface temperature
(SST) anomalies for the region 0–60oN over a period
of approximately 65–70 years (Nye et al., 2013). Nye
et al. (2013) summarize published correlations
between the AMO and the distribution of phytoplank-
ton and zooplankton species, the distribution and
catches of marine and anadromous fishes, and the
structure of fish assemblages. Because the AMO is a
direct reflection of SST patterns, it is likely that the
mechanisms behind the reported correlations between
population and ecosystem effects and the AMO relate
to the degree of stratification in the water column and
its subsequent effects on productivity.

The NAO is a measure of the atmospheric pressure
difference between the Arctic and subtropical Atlan-
tic, and is a prominent and recurrent climate pattern
within the basin (Hurrell et al., 2003). A power spec-
trum of the NAO does not appear to exhibit a domi-
nant frequency, although biennial variability is
common (Hurrell et al., 2003). Indices can be calcu-
lated for any period of time, but a winter (December–
March) NAO index is the most common, largely
because it exhibits the most variability and is most
clearly correlated with broad spatial and temporal tele-
connections (Hurrell et al., 2003). Indeed, Hurrell and
Deser (2009) reported that the summer (June–August)
NAO index exhibits the minimum temporal variabil-
ity. Accordingly, we use a winter NAO index hereafter.
As with the AMO, the NAO has been correlated with
a wide diversity of population and ecosystem effects in
both terrestrial and marine ecosystems (Ottersen et al.,
2001). Brodziak and O’Brien (2005) have shown that
the NAO influences recruitment anomalies of ground-
fish in the western Atlantic. Hare and Able (2007)
have shown the NAO is a predictor of the abundance
of Atlantic croaker, Micropogonias undulatus, in the
mid-Atlantic. Peer and Miller (2013) have demon-
strated a correlation of the NAO with the phenology of
spawning of striped bass, Morone saxatilis. However,
because the NAO is an index of atmospheric condi-
tions, mechanistic explanations of the correlations
reported above are less direct than they are for the
AMO. For example, Hare and Able (2007) invoke a
northward latitudinal displacement of a relatively cold
water mass along the US mid-Atlantic coast to explain
the increases in croaker abundances they document.

A third regional index of climate reflects the posi-
tion of the north wall of the Gulf Stream, the GSI
(Taylor, 1996). Taylor invoked a relationship between
the sinuosity of the Gulf Stream and the path and fre-
quency with which cyclonic weather systems traverse
the Atlantic and plankton communities in the
approaches to the English Channel. More recently,
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Nye et al. (2011) have invoked changes in the path of
the Gulf Stream to explain northward shifts in the dis-
tribution of silver hake, Merluccius bilinearis, in the
northwest Atlantic. As with the NAO, the mecha-
nisms behind the reported correlations are less direct
than with the AMO, but they are likely related to
changes in the distribution of warmer bottom water
(Nye et al., 2011).

In addition to the three broad climate indices dis-
cussed heretofore, indices that reflect local conditions
can also be defined. Such local indices have also been
shown to be correlated with local population and eco-
system responses. Frank et al. (2005) use indices of
bottom water temperature and stratification on the
Scotian Shelf, to explain a lack of recovery of Atlantic
cod, Gadus morhua, and other groundfish even after a
fishing moratorium was instituted. At a smaller scale,
Collie et al. (2008) report a strong correlation
between fish community structure in Narragansett Bay
and Narragansett Sound, RI, and spring–summer SST.
Often the mechanisms underlying the reported corre-
lations at these smaller scales are clearer.

Analyzing the temporal responses of species to abi-
otic and climate factors, such as those discussed above,
is a complex statistical problem. Often multivariate
techniques, such as principal components analysis
(PCA), have been used to detect patterns (Sirabella
et al., 2001). Although PCA has been successfully
applied to detect abiotic influences on the dynamics
and distributions of marine species, the technique
assumes that observations are independent, thereby
ignoring the autocorrelation inherent in time series
data. However, traditional multivariate time series
approaches require extensive time series for accurate
parameter estimation. Recently, Zuur et al. (2003a)
developed an approach for multivariate time series,
termed dynamic factor analysis (DFA), which can reli-
ably analyze shorter time series that are characteristic
of ecological data. The approach decomposes time ser-
ies into a finite number of common trends. Zuur and
colleagues have used DFA to analyze patterns in both
invertebrate and fish species (Zuur et al., 2003b; Zuur
and Pierce, 2004). In both cases, the fisheries time ser-
ies were shown to parallel patterns evident in the
NAO. More recently, Katara et al. (2011) have used
the technique to evaluate drivers of the coherent
dynamics of anchovy, Engraulis encrasicolus, and sar-
dine, Sardinops sagax, in the eastern Mediterranean.

Here we evaluate patterns in the variability in pop-
ulations of blue crab from Florida to Delaware Bay to
assess the degree of synchrony among neighboring
populations. Additionally, we seek to evaluate the
potential role of several potentially key environmental

variables in influencing crab population dynamics: the
NAO, the GSI, regional winter temperature and sun
spot number. We considered the NAO and GSI sepa-
rately even though they are significantly correlated
(r = 0.43, P = 0.01) because the NAO is a more com-
plex phenomenon than the GSI and therefore blue
crab populations may be influenced more by one than
the other. We included winter temperature as an
explanatory variable because of its strong role in creat-
ing an underlying latitudinal gradient in the extent of
overwintering: blue crabs north of South Carolina
overwinter, whereas those in the south are active year-
round (Bauer and Miller, 2010). We also included sun
spot number in our analyses, following Hurt et al.
(1979), who reported a significant relationship
between abundance of blue crab in the Chesapeake
Bay and sunspot activity.

Our approach was to use abundance time series
developed from catch-survey stock assessment models
previously applied to stocks throughout the study
range (Colton, 2011). Time series of absolute abun-
dance developed from the assessment models were
analyzed first using PCA to determine the degree and
extent of synchrony in the dynamics of blue crab
stocks. We tested the hypothesis that stocks separated
by smaller geographic distances will be more similar
than stocks separated by larger distances, by correlat-
ing the Euclidean distance separating each population
in the PCA ordination with their equivalent geo-
graphic separation distance. Subsequently, we used
DFA to determine the extent to which environmental
variables explain any of the synchronization evident
in both age-0 and age 1+ blue crab populations.

METHODS

Stock assessments

Abundance time series from each of the seven princi-
pal blue crab stocks from the U.S. Atlantic coast
(Delaware Bay, Chesapeake Bay, coastal MD and
VA, North Carolina, South Carolina, Georgia, and
Florida – Fig. 1) were derived from stock assessments.
Details of the assessment methodology and results are
provided in Colton (2011) and are only summarized
here. Separate assessments were developed for each
region. Each assessment involved a structured popula-
tion model which propagates changes in abundances
of pre-recruited and recruited crabs through time
(Collie and Sissenwine, 1983; Miller et al., 2011) and
observation models which described the fit of the
observed fishery independent surveys to the process
model. The structured population model can be rep-
resented as:
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Ntþ1 ¼ ðNt þ RtÞ � e�M=2 � Ct

� �
� e�M=2 ð1Þ

where N and R are the abundances of recruited (age-
1+) and pre-recruited (age-0) crabs, C is the annual
catch, M is the intrinsic rate of natural mortality, and
the subscripts represent time. The model assumes a
pulse fishery operating halfway through the year (Col-
lie and Sissenwine, 1983; Miller et al., 2011).
Observed survey time series were incorporated in
observation models which prescribed the fit between
observed and model abundances for each survey. Spe-
cifically,

nt ¼ qn �Nt � ent ð2Þ

rt ¼ qr � Rt � edt ð3Þ

where N, R and t are as defined above, n and r are the
survey estimates of the abundance of recruited (age-
1+) and pre-recruited (age-0) crabs, q is a stage-specific
catchability, and g and d are lognormal error terms.
Estimates of qn were generated for each survey from:

qn ¼ exp

P ðlogðntÞ � logðNtÞÞ
k

� �
ð4Þ

and qn was calculated as a ratio. Likelihood compo-
nents for each survey, assuming lognormal error, and
penalty terms that penalized estimation of negative
abundances and extreme exploitation rates were
summed to provide an overall objective function. In
model fitting, the objective function was minimized
using a non-linear search algorithm in AD MODEL
BUILDER (Fournier et al., 2012). Full details are
provided in Colton (2011).

Statistical analyses

We conducted three suites of analyses to determine
whether synchronization was present among blue crab
populations in the time series of age-0 (i.e, Rt), age-1

+

(i.e., Nt) or total abundance (i.e., Rt + Nt) generated
by the assessment models. The most elementary analy-
sis was a simple linear correlation analysis, which
sought to document the level of correlations among
the seven different stocks. These analyses assume sta-
tistical independence both within and among

Figure 1. Map of the Atlantic coast of
North America showing the locations of
the seven principal blue crab populations
used in the analysis.
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abundance time series. As such, the analyses ignore
the potential role of temporal autocorrelation within
the time series.

We subsequently employed a PCA to assess the
extent of synchronicity among populations (McGari-
gal et al., 2000). A PCA was conducted for total abun-
dance of each stock using the correlation matrix. A
scree plot and the percent (%) of variation explained
were used to determine how many principal compo-
nents to retain in the analysis. PCA was conducted
using the princomp function in R (Package stats ver-
sion 2.16.0). To quantify the degree of similarity in
the dynamics of pairs of stocks for total blue crab abun-
dance, we calculated the Euclidean distances between
the two points representing each pair of stocks based
on their coordinates on the first two PCA axes, since
these two axes explained 69.4% of the variance and
therefore explained most of the variability in blue crab
abundance relationships among the states. This matrix
of PCA separation distances was compared with the
matrix of geographical distances between populations
to evaluate the hypothesis that correlations will be
inversely related to separation distance. Geographical
distances were determined by estimating the geo-
graphic center of each state or region using ARCGIS
(ESRI Corporation, Redlands, CA, U.S.A.) (Colton,
2011). Linear regressions were used for each state or
region to assess the relationship between geographic
and PCA distances. Similar PCA analyses were con-
ducted for age-0 and age-1+ abundance time series.
The results of these analyses, not reported here, were
broadly similar to those for total crab abundance.

A dynamic factor analysis (DFA) was used to evalu-
ate the relationship between stock dynamics and indi-
vidual explanatory environmental factors. The
underlying DFA model may be written as:

yt ¼ cþ Zat þDxt þ et ð5Þ
where yt is a vector of landings at time t, c is a constant
level parameter that allows the trends to move up or
down to better fit the time series, at is a vector of com-
mon trends at time t which is multiplied by a matrix Z
of factor loadings for each region onto those common
trends, xt is a vector of explanatory variables at time t
which is multiplied by matrix D of regression parame-
ters for each region in relation to those explanatory
variables, and et represents random error with the
assumption that et ~N(0, H), where H is a symmetric,
non-diagonal covariance matrix (Zuur et al., 2003a).

Two sets of DFA analyses were conducted to
examine possible trends among the different blue crab
populations along the western Atlantic: one set for
age-0 and one for age-1+ crabs. For large-scale

environmental variables we used winter NAO aver-
aged for the December–March period for each year
(data obtained from the National Weather Service
Climate Prediction Center, College Park, MD, USA),
the GSI averaged annually (data obtained from Mar-
ine Biological Association of the United Kingdom,
Plymouth, UK) and sunspot number (SSN) averaged
annually (data obtained from NASA Marshall Flight
Space Center-Solar Influences Data Analysis Center,
Huntsville, AL, USA). For a small-scale environmen-
tal variable we used northern and southern winter
temperature (Colton, 2011). In fitting the DFA to N
populations, we examined between 1 and N–1 com-
mon trends for each of the explanatory variables and
without any explanatory variables included. Akaike’s
information criterion (AIC) was used to determine
which of the model runs was best for describing the
abundance data for each age class and region. All DFA
analyses were conducted in R v. 2.11.1 (R Core Devel-
opment Team 2008) using a commercial interface
designed specifically to implement DFA algorithms
(BRODGAR v. 2.6.6 – Highland Statistics Ltd, New-
burgh, Scotland).

RESULTS

Stock assessment models fitted to data from each
region indicate how well each survey is explained by
the modeled population abundances for both age-0
and age-1+ crabs (Table 1). Surveys associated with a
high R2 statistic are better indices of abundance. For
example, in Delaware Bay the Delaware trawl does a
much better job at predicting abundance given the
parameters in the model than the New Jersey trawl
does for both age classes of crabs (Table 1). Therefore,
the model’s estimate of absolute abundance for Dela-
ware Bay has a pattern similar to the Delaware trawl
survey (Fig. 2). The models produced absolute abun-
dance estimates of age-0 and age-1+ blue crabs for each
region for the period 1990–2008 (Fig. 3; Colton,
2011). Each state had at least one survey that was
highly correlated with the output time series from the
model and we felt confident in our estimates to be able
to use the absolute abundance time series predicted by
the models in our analyses.

The linear correlation analysis provided prelimin-
ary evidence that the abundances of some blue crab
stocks are correlated along the western Atlantic
(Fig. 4). In particular, the three southernmost states
(SC, GA and FL) of the study area demonstrated sig-
nificant correlations (r > 0.65). Abundance of crabs in
the Chesapeake Bay was also significantly correlated
with abundances in these three states (r > 0.68).
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Coastal MD and VA, NC, and SC abundances were
moderately but not significantly correlated with each
other. There was little evidence of a linear correlation
between abundances in Delaware Bay and the other
states (r < 0.28).

The first two axes of the PCA for the assessment-
derived total abundance of blue crabs in each region
explained 69.4% of the variation in abundance. All of
the regions loaded negatively on the first principal
component (PC1; Table 2, Fig. 5). A latitudinal pat-
tern was evident on the second principal component
(PC2), with northern and southern regions clearly sep-
arated. Delaware Bay, the MD and VA coastal bays,
and North Carolina loaded negatively on PC2. In con-
trast, South Carolina had a slightly negative loading,
whereas Georgia and Florida loaded positively. Chesa-
peake Bay had a slightly positive loading, which did
not follow the general latitudinal pattern.

The PCA scores (years) form a pattern on the plot,
with the early 1990s being negatively loaded on PC1
and positively loaded onto PC2, the mid-late 1990s
negatively loading on both PC1 and PC2, the early
2000s positively loading on PC1 and negatively load-
ing on PC2, and the mid-late 2000s loading positively
on both principal components. Therefore, the early
1990s associated with the southern states in the PCA
space and the mid-late 1990s associated very closely
with the northern states, suggesting a temporal pattern
in addition to the spatial pattern.

Further support for the presence of spatial syn-
chrony came from regressions of geographic distances
to PCA distances for each region (Fig. 6). The stocks
towards the edges of the study range (Delaware Bay,
Georgia, and Florida) exhibited a strong positive rela-
tionship between the two distance measurements,
whereas the states in the middle of the study range had
a slope close to zero and did not exhibit a very good fit
(Fig. 6). These results suggest that the northern
regions exhibited broadly similar patterns in abun-
dance and that these patterns were different than
those demonstrated by the southern regions, which
were also internally coherent. The mid-Atlantic
regions had no distinguishable relationship because
they are between the two groups of populations and
therefore potentially have characteristics of each. This
latitudinal grouping was reinforced if Chesapeake Bay
was dropped from the regression analysis as anomalous
(Colton, 2011).

Because the PCA suggested spatial separation
between the northern and southern regions, we ran
DFAs separately for northern (Delaware Bay – NC)
and southern (SC – FL) regions. Chesapeake Bay was
included in the northern DFA because even though

Table 1. Results for the stock assessment models. The nega-
tive log-likelihood values are for the overall model and the
R2 values represent the correlation between the observed
and predicted values for each fishery-independent survey
that went into the model.

– LL R2

Delaware Bay 94.52
Age-0
New Jersey Trawl 0.17
Delaware Trawl 0.43
Age-1+

New Jersey Trawl 0.03
Delaware Trawl 0.72

Chesapeake Bay 248.26
Age-0
VIMS Trawl Age-0 0.34
Maryland Trawl Age-0 0.03
Winter Dredge Age-0 0.65
Age-1+

VIMS Trawl Age-1+ 0.55
Maryland Trawl Age-1+ 0.26
Winter Dredge Age-1+ 0.74
CHESMMAP Age-1+ 0.14

Coastal Maryland and Virginia 31.60
Age-0
Maryland Seine 0.45
Maryland Trawl 0.72
Age-1+

Maryland Seine 0.27
Maryland Trawl 0.67

North Carolina –69.47
Age-0
North Carolina Trawl 0.07
Age-1+

North Carolina Trawl 0.997
South Carolina 33.76
Age-0
South Carolina Trawl 0.22
Age-1+

South Carolina Trawl 0.90
Georgia 1.94
Age-0
Georgia Trawl 0.76
Age-1+

Georgia Trawl 0.92
Florida 16.04
Age-0
North Indian River Lagoon (IRM) 0.03
Northeast Florida (JXM) 0.72
Age-1+

North Indian River Lagoon (IRM) 0.74
Northeast Florida (JXM) 0.41
South Indian River Lagoon (TQM) 0.48
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the PCA suggests it followed the pattern of the south-
ern states, it is geographically located in the north and
therefore would be influenced by northern environ-
mental variables. Since the main goal of the DFA is to
examine how the environment influences blue crab
abundance we included the Chesapeake Bay in the
northern analyses. We ran separate analyses for age-0
and age-1+ blue crabs with the goal of determining
whether one life stage was more important for syn-
chronization than the other.

The age-0 abundance data for the northern regions
were best explained by a DFA model with one com-
mon trend and the GSI as an explanatory variable
(Table 3). One other model exhibited a ΔAIC < 2
(GSI with two trends) and was therefore also well sup-
ported by the data (Table 3). Considering the best fit-
ting model, the Chesapeake Bay, the coastal bays of
Maryland and Virginia, and North Carolina all loaded
positively onto the trend, suggesting their abundances
were most closely related to the trend. The model fit
North Carolina well (R2 = 0.725), and Chesapeake
Bay and the coastal MD and VA bays moderately well
(R2 = 0.425 and 0.424). The fit for Delaware Bay was
poor (R2 = 0.018). The common trend can be

interpreted to imply that blue crab populations were
decreasing during the 1990–2008 period in North Car-
olina, the Chesapeake Bay and the MD and VA
coastal bays (Fig. 7a). The GSI was strongly and nega-
tively correlated with North Carolina (Table 4). The
other parsimonious model had the same environmen-
tal covariate, but two common trends instead of one.
Like the model with one trend, the GSI was strongly
and negatively correlated with North Carolina (regres-
sion parameter = –0.547). However, the first trend of
the two-trend model best explained the variation in
the coastal bays of MD and VA (factor load-
ing = 0.462) and North Carolina (factor loading
= 0.396), whereas the second trend best explained
only the Chesapeake Bay (factor loading = 0.386).
Both trends suggested a decline in blue crab abun-
dance over the time series. The fits for this model were
better for all four regions (R2 = 0.034 for Delaware
Bay, 0.829 for Chesapeake Bay, 0.779 for coastal MD
and VA, and 0.764 for North Carolina) than for other
models, suggesting that treating Chesapeake Bay as a
separate trend may be appropriate.

The adult abundance data for the northern regions
were best explained by a DFA model with one

(a)

(c)

(b)

(d)

Figure 2. Model fits in the catch survey
models for (a) Delaware trawl age-0
crabs, (b) New Jersey trawl age-0 crabs,
(c) Delaware trawl age 1+ crabs and (d)
New Jersey trawl age 1+ crabs. The
observed time series is represented by the
open points and the fitted time series
from the model is depicted by the line.
R2 values represent the correlation
between observed and predicted values.
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common trend and no explanatory variables included
(Fig. 7b). The model fit Chesapeake Bay and the
coastal MD and VA bays well (R2 = 0.71 and 0.61)
but provided a much poorer fit for Delaware Bay
(R2 = 0.28) and North Carolina (R2 = 0.07). As with
the age-0 northern DFA, other models (NAO with
one trend and GSI with one trend) exhibited
ΔAIC ≤ 2 and therefore were similarly supported by
the data (Table 2). All three of the parsimonious
models identified in the DFA contained a single com-
mon trend that showed a decrease in blue crab abun-
dance over the course of the time series. The models
differed in which, if any, covariate was included.

The DFA results for age-0 crabs in the southern
region indicated that five of the 14 models examined
were equally parsimonious (Table 3). These five

models varied in the number of trends and in which
environmental covariates, if any, were included in the
model. Those models with two trends principally sepa-
rated South Carolina from Georgia and Florida. The
trends in all models suggested a decrease in blue crab
abundance until about 2005, when there was evidence
of a possible recovery occurring up until 2008; the end
of the time series. Since all parsimonious models sug-
gested a similar pattern in abundance, results for the
DFA model that had one common trend and southern
winter temperature as an important explanatory vari-
able are presented as an example. All three states were
strongly and positively correlated with the trend
(Fig. 7c). Southern winter temperature was strongly
and positively correlated with South Carolina and
Florida (Table 4). The model fit Georgia and Florida

Figure 3. Time series of abundances for age-0 (left) and age-1+ (right) blue crab estimated from application of a catch-survey
model to fishery catch and survey abundance times series for each stock. For more details on the assessment methodology, see
Colton (2011). Note differences in vertical scale on individual panels.
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very well (R2 = 0.87 and 0.78) and fit South Carolina
moderately well (R2 = 0.53).

The age-1+ DFA for the southern regions with the
lowest AIC was the model with one common trend
and the GSI as an explanatory variable (Table 3). The
trend for the best model was very similar to that of the
age-0 crabs except that there is a 1-year lag when the
increase in the early 2000s and the subsequent
decrease towards 2008 occurs. All states were strongly,
positively correlated with the trend (Fig. 7d). The
GSI was strongly, positively correlated with South
Carolina (Table 4). The model fit South Carolina and
Georgia very well (R2 = 0.86 and 0.98) but fit Florida
poorly (R2 = 0.20). There were three other parsimoni-
ous models for age 1+ blue crabs (Table 3). All but
one of these models suggested that one common trend
was needed to best explain the data. The model that
suggested two common trends were needed only mod-
erately explained South Carolina and was weakly cor-
related with Georgia and Florida. The models differed
in which environmental covariate, if any, were needed
to best explain the data, with the GSI was important
in two out of the four parsimonious models.

DISCUSSION

Our analyses provide evidence for the existence of syn-
chrony among blue crab populations along the east

coast of the USA. The synchrony was revealed as a lat-
itudinal gradient in which stocks from northern
regions, broadly defined, were internally coherent and
different from populations in southern regions that
themselves were internally coherent. Specifically,
based on the results of the PCA, abundances of blue
crab populations in Delaware Bay, the coastal bays of
Maryland and Virginia, and North Carolina exhibit
similar trends to each other that differ from abundance
trends in South Carolina, Georgia, and Florida, which
themselves demonstrate synchrony. The Chesapeake
Bay population was a notable anomaly to this pattern.
All DFA trends indicated an overall decline in abun-
dance in blue crabs over the last two decades, regard-
less of region or age-class. Models for the southern
region indicated slight evidence of a recovery in abun-
dance in the early 2000s, but these then decreased
again so it is unclear if this region is in fact experienc-
ing a recovery or if the increase in the last couple of
years was due to natural fluctuation.

The latitudinal and temporal pattern we found
among the abundance time series in blue crab from dif-
ferent populations clearly indicates that there is a geo-
graphic pattern in synchrony. The latitudinal pattern
could be due to a Moran effect creating a northern and
southern pattern in abundance. An alternative expla-
nation would invoke patterns of larval crabs in the
western Atlantic. However, little is known about

Figure 4. Results of correlation analysis
among total abundances of blue crab
populations. The upper panels show the
scatter plot of abundances with the best
fit line and the lower panels report the
correlation coefficient for the corre-
sponding two populations. Correlation
coefficients that were significant
(P < 0.05) are shown in bold type.
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larval blue crab dispersal at this scale. Very few studies
have been done on mixing of blue crab populations
and the few that have, were largely focused in Dela-
ware Bay. The published work (Epifanio et al., 1989;
Garvine et al., 1997; Tilburg et al., 2009) has centered
on blue crab larval retention with the general conclu-
sion that larvae released from Delaware Bay are either
retained or transported southward and there is unlikely
to be any transfer of larvae that originated in the
southern estuaries into Delaware Bay. The abundance
in Delaware Bay had the worst model fit in all DFAs
and was not strongly correlated with any other stock
in the Pearson correlations, which could potentially be
a result of not receiving larvae from other estuaries.

The DFAs indicated that the GSI improves the
model fit in the age-0 northern and the age-1+ south-
ern abundance models, which suggests that this cli-
matic index may relate to a transport mechanism
within each region that generates the observed latitu-
dinal pattern. We do not take this to necessarily

imply connectivity among populations. Rather we
suggest that the GSI reflects conditions that promote
transport of larvae back to their ‘parental’ estuary.
Although the NAO is correlated with the GSI, the
limited explanatory power of the NAO for the vari-
ability in crab populations suggests that the GSI
explanatory power is due less to large-scale weather
patterns and more to changes in local circulation that
result from variations in the position of the Gulf
Stream. However, the regression coefficients were
only significant for North Carolina and South Caro-
lina regions. The GSI reflects the position of the
north wall of the Gulf Stream as it turns offshore at
Cape Hatteras, so these two states may be more
strongly affected simply because of their close proxim-
ity to the turning point of the Gulf Stream (Taylor,
1996). Motion of the north wall of the Gulf Stream is
linked to on- and offshore modes of variability (Bane
and Dewar, 1988),which may give rise to enhanced
exchange between the Mid- and South-Atlantic

Table 2. Proportion of variance explained, loadings and scores from PCA for the total abundance of blue crab.

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Proportion of variance 0.486 0.208 0.129 0.087 0.055 0.024 0.011
Loadings
Del.Bay –0.174 –0.295 0.900 –0.233 0.097 0.090 0.039
Ches.Bay –0.479 0.108 –0.142 0.103 0.518 0.645 –0.208
Coastal –0.211 –0.553 –0.400 –0.627 0.182 –0.127 0.218
NC –0.197 –0.617 –0.059 –0.700 –0.128 0.020 0.266
SC –0.495 –0.098 –0.048 –0.076 –0.543 –0.124 –0.653
GA –0.446 0.37 0.004 –0.129 –0.453 0.197 0.636
FL –0.462 0.261 0.064 0.174 0.416 –0.711 0.075

Scores
1990 –2.851 1.741 –1.573 0.566 1.117 0.166 –0.366
1991 –3.503 1.477 0.537 0.029 –0.327 –0.381 –0.084
1992 –2.000 1.541 –0.668 –0.099 –1.058 0.214 0.087
1993 –2.044 –0.739 1.112 –1.077 0.526 0.700 –0.188
1994 –1.612 –1.368 –0.018 –0.805 –0.381 –0.172 0.073
1995 –0.873 –1.197 –1.048 –0.581 –0.861 0.472 0.203
1996 –1.115 –1.379 –0.088 1.122 0.306 0.289 0.338
1997 –1.107 –0.735 1.332 0.723 1.479 0.001 0.179
1998 –0.046 –1.758 0.448 1.075 –0.354 –0.394 0.197
1999 –0.269 –1.313 0.402 0.336 –0.364 –0.320 –0.299
2000 0.772 –0.846 –0.200 –0.682 –0.045 –0.859 –0.561
2001 2.414 –0.717 0.584 –0.698 0.318 0.461 –0.232
2002 2.597 –0.247 –1.562 –0.461 0.587 0.480 –0.159
2003 1.805 –0.291 –1.454 0.223 0.007 –0.109 0.276
2004 1.059 0.544 –0.668 –0.536 0.322 –0.624 0.258
2005 1.020 1.232 –0.109 –0.526 0.261 –0.433 0.433
2006 1.373 1.702 1.406 –0.500 –0.131 0.242 0.317
2007 2.021 1.469 1.453 –0.110 –0.084 –0.054 –0.159
2008 2.359 0.884 0.114 2.001 –0.847 0.292 –0.284

PCA, principal components analysis.
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Bights, influencing the synchrony of the populations.
Hypotheses that invoke larval transport processes are
certainly not the sole viable explanations of the
observed latitudinal grouping. For example, the

populations could be responding to variability at a
regional scale in the abundance of important preda-
tors, which is itself driven by climatic forcing (e.g.,
Hare and Able, 2007). Alternatively, approaches to

Figure 5. Principal components analysis
(PCA) results for the 1st two principal
components (69.4% of the overall vari-
ance explained) for total abundance.
The state/regional labels represent the
loadings of individual regions on each
axis. The numbers represent scores for
the individual years (1990–2008).

Figure 6. Plots showing relationship
between Euclidean separation distances
in the total abundance principal compo-
nents analysis (PCA)-space from Fig. 5
and geographical distances between the
indicated state/region and every other
state region. Simple linear regression fits
to the data are shown in each panel.
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management in the different regions might be respon-
sible. For example, although management of blue crab
is conducted at the state level, it could be argued that
there is more exchange of ideas and approaches to
management within the northern and southern states
than there is between the two groupings: the northern
states work within the Mid-Atlantic Fishery Manage-
ment Council at the federal level, and the southern

states within the South Atlantic Fishery Management
Council at the federal level.

Winter temperature was an important variable for
age-0 southern crabs and was strongly correlated with
South Carolina and Florida. Both of these states were
positively correlated, suggesting that colder winters
lead to lower abundances of blue crab. This is reason-
able because crabs in the southern states do not over-
winter and therefore colder temperatures are likely to
lead to high mortality rates (Bauer and Miller, 2010;
Hines et al., 2010). There are also other potential
environmental factors not examined in this study that
may help explain latitudinal patterns in blue crab
landings. Sanchez-Rubio et al. (2011) found that the
AMO, NAO, and north–south wind momentum drive
patterns in juvenile blue-crab abundance in the north-
central Gulf of Mexico, explaining 25–28% of the var-
iability. Sanchez-Rubio et al.’s (2011) evidence of
environmentally driven abundance patterns in the
Gulf of Mexico suggests that abundances of juvenile
blue crabs could be synchronized through a Moran
effect in the Gulf of Mexico also. Our results suggest a
similar conclusion for the Atlantic seaboard.

It should also be noted that all but one of the
parsimonious models that contained an environmen-
tal covariate included the NAO, GSI, or winter tem-
perature. These three variables are correlated but
differ with respect to their spatial domain. The
NAO acts at the broadest scale, whereas temperature
acts at the smallest scale (Hurrell and Deser, 2009).
The correlations among these variables may explain
why more than one model was deemed appropriate

Table 3. AIC values for DFA analyses. The best model (indicated by the lowest AIC value) is indicated in bold and is high-
lighted. Other potential models (ΔAIC ≤ 2) are indicated in bold.

No Env. NAO GSI SSN
N
winter temp

S
winter temp Winter temp

NORTH Age-0
1 trend 220.831 224.918 217.627 222.949 225.122 224.205 227.687
2 trends 221.564 221.341 218.978 261.465 225.123 227.672 231.028
3 trends 225.897 221.244 223.306 273.502 226.999 231.872 232.795

NORTH Age 1+

1 trend 212.377 213.47 214.345 219.864 216.388 214.431 218.935
2 trends 217.264 218.345 218.586 388.931 233.599 220.47 228.561
3 trends 221.292 222.453 222.592 417.707 230.537 258.621 245.007

SOUTH Age-0
1 trend 145.018 145.099 147.187 149.424 149.086 144.066 148.12
2 trends 145.475 145.949 147.334 153.424 152.351 148.097 154.187

SOUTH Age 1+

1 trend 134.18 139.435 133.761 135.165 138.673 138.217 143.085
2 trends 136.05 141.221 135.68 139.165 141.475 142.217 145.118

AIC, Akaike’s information criterion; DFA, dynamic factor analysis; SSN, sunspot number.

Table 4. Regression parameters (D matrix in Eqn 5) for the
relationship between each region and the included explana-
tory variables in the best DFA analyses. Strong correlations
are indicated in bold (by convention |t| > 1.5, Zuur et al.,
2003a, 2003b).

Estimated parameter SE t-value

Northern
Age-0, one trend, GSI
DB –0.167 0.267 0.626
CB –0.061 0.217 0.281
coastal MD/VA 0.141 0.215 0.658
NC –0.594 0.173 3.430

Southern
Age-0, one trend, S temp
SC 0.723 0.103 7.019
GA –0.135 0.108 1.244
FL 0.588 0.105 5.624
Age-1+, one trend, GSI
SC 0.303 0.154 1.971
GA –0.086 0.150 0.575
FL –0.158 0.252 0.627

DFA, dynamic factor analysis; GSI, Gulf Stream Index.
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and how different models created very similar trends.
The importance of climate variability in regulating
abundances of blue crab could be expected to vary
lattitudinally a priori from a consideration of the spe-
cies life history alone (Hines et al., 2010). The shift
from year-round growth in SC, GA, and FL to dis-
continuous growth in the more northern regions
implies that seasonal restrictions on growth are likely
to be more pronounced in the northern region, and
thus potentially more responsive to environmental
variability.

Variations in crab abundances in the Chesapeake
Bay blue crab population were most similar to Florida
and Georgia and thus were an anomaly to the latitudi-
nal pattern evident among the other regions. How-
ever, when data from the Chesapeake Bay were
included with the northern states for the DFA (based
purely on geographic proximity), the dynamics of the

Chesapeake stock appeared broadly similar to the
other stocks in the northern region, suggesting that
the models for the northern regions adequately explain
at least a portion of blue crab abundance trends in the
Chesapeake Bay. However, it is possible that the
northern age-1+ DFA fit is being driven primarily by
the Chesapeake Bay data, as indicated by the poor fit
of this DFA to the North Carolina and Delaware Bay
data. The distinct dynamics in the Chesapeake Bay
may reflect the fact that the Chesapeake Bay is differ-
ent from other systems. This high level of productivity
may impact the population dynamics of blue crab dif-
ferently compared with estuaries of other stocks
included in the analysis (Nixon, 1988). Another
potential explanation could be that the pattern of fish-
ing mortality in Chesapeake Bay is uniquely related to
other estuaries and this drives the dynamics differently
than in the rest of the coast. A closer look at what

(a)

(b)

(c)

(d)

Figure 7. Results of dynamic factor
analysis (DFA) analyses. Left column
shows common trends from the DFA
model with the lowest AIC value
(�95% CI) for (a) age-0 blue crabs in
the northern region, (b) age-1+ blue
crabs in the northern region, (c) age-0
blue crabs in the southern region and (d)
age-1+ blue crabs in the southern region.
Right-hand column shows equivalent
factor loadings for each state/region on
the common trend. Loadings falling out-
side the dotted lines are significantly cor-
related with the corresponding trend
based on an arbitrarily chosen cut-off
level of 0.1, which was suggested by Zuur
et al. (2003b).
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makes the Chesapeake Bay different from its neighbor-
ing estuaries would be useful for a better understanding
of where it fits into the pattern.

Overall, there are similarities in blue crab popula-
tion fluctuations along the east coast and therefore
some degree of synchrony is present. Density-indepen-
dent mechanisms were found to drive this synchrony,
with a combination of both mixing through dispersal
and a Moran effect due to the GSI or winter tempera-
ture serving as these density-independent drivers,
although they cannot explain all of the variability seen
in the populations. Although this creates a foundation
for better understanding the fluctuations in blue crab
populations, more studies into the density-indepen-
dent mechanisms driving blue crab fluctuations are
needed to better inform management agencies along
the east coast of the USA. A better understanding of
the spatial variation of populations could provide more
insight into what mechanisms drive fluctuations in
abundance. With this information we may eventually
be able to predict future blue crab abundance based on
trends in ocean currents and environmental processes,
which could lead to more effective management.
Finally, this study presented evidence for separate
northern and southern trends in blue crab abundances.
A latitudinal split in synchrony suggests the need for
the regional management of blue crab rather than the
state-by-state management that is currently in
practice.
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